

Steven D. Vance¹
Michael J. Malaska¹
Christopher Glein²

NAI Titan team

¹ Jet Propulsion Laboratory / /California
 Institute of Technology
 ² Southwest Research Institute

Cryovolcanism in Icy Ocean Worlds: Perspective from Models of Radial Structure

Titan subsurface: The first 1 km

Speculative structure – need better estimates and constraints

surface— 100 m: organic deposit depth — spatially variable depths Possibly liquid hydrocarbon saturated (Hayes et al. 2008, Liu et al. 2016)

100 m − 1 km: Hydrocarbon (ethane?)-saturated regolith
From 10 m ethane accommodated in 5% void areas in regolith →200 m-ish.
How deep do organics penetrate from surface?
Fluids with dissolved material?
Clastic materials?

>1 km: Mostly H₂O / clathrate? (e.g., Sohl et al. 2010, Choukroun and Sotin 2012)

Titan deep subsurface: 1 km - 1000 km

(near surface layers: pore saturated regolith)

1 km – 7 km Stagnant ice lid Constant density: steep thermal gradient (organics?)

7 km – 100 km Convective ice zone Constant density: very shallow thermal gradient (liquid pockets?)

100 km – 395 km Deep subsurface ocean (74-108 km modeled range for ice-ocean interface) Shallow thermal gradient; Composition from 3% NH₃/H₂O to 10% MgSO₄/H₂O*

395 km – 470 km High-pressure ice layers: slightly higher density >470 km Hydrated silicate core much higher density & thermal gradient

^{*}Based on *Cassini* gravity science data and modeling in Vance et al. 2018

density [kg m

Surface – 100 m Surface organics layer

Note scale change in y-axis. 0-1 km has a linear scale >1 km depth is a log scale.

Organic airfall deposit

Processed geology: eolian, erosion, dissolution Likely methane saturated: wet dry cycles

T= 90 - 95 K P = 0.15 MPa Density: organic, so 0.9 g/cm³

Kinetically inhibited reactions - slooooooow Physical (geology) movements >> biology ("Hey, I was gonna eat that!")

Cryogenic methane is a poor solvent Building bigger molecules makes them insoluble! (Life would require weak/transient, not covalent bonds)

Key questions:

What are typical dominant organics at surface?

100 m – 7 km Stagnant ice lid

Note scale change in y-axis. 0-1 km has a linear scale >1 km depth is a log scale.

Hydrocarbon saturated ice (Ice Ih) zone

Porous (ice Ih) regolith? Possible clathrate ice. Some organic penetration from tectonics, hydrocarbon fluid circulation

T= 95 K - 253 K steep thermal gradient P = 0.15 MPa - 10 MPa Density: 0.93 g/cm³

Warmer, better hydrocarbon solvents? ethane, propane

Some organics transported by fluid flow? Cryovolcanic emplacements on ascent? Crater impact mixing / injection

Key questions:

How deep do hydrocarbon liquids go? How deep are organics (dissolved?) transported? What are downward transport mechanisms/fluxes

7 km - 104 km Convective ice zone

Note scale change in y-axis. 0-1 km has a linear scale >1 km depth is a log scale.

Convecting warm ice zone

"conveyer belt"

Liquid water may occur in the ice (Kalousova et al. 2014)

T= 253 K – 261 K shallow thermal gradient

P = 10 MPa - 130 MPa

Density: 0.93 g/cm³

Organics descending!

Jacked liquid salt water solutions from upwelling! Mixing of solid water/organics/liquids! Wheee! Steep thermal gradient at ice-ocean interface

Key questions:

What are freezing points of relevant salt solutions at pressure?

What is limit for ascending liquid water solution? What terrestrial life could exist in these conditions?

Chemical concentration

As ice grains freeze out chemical concentrates

Data from GISP 2 ice core at 146 m depth

<u>ion</u> <u>buik</u> <u>vein</u> <u>conc. lact</u>	<u>ion</u>	<u>bulk</u>	<u>vein</u>	Conc. facto
--	------------	-------------	-------------	-------------

Sulfate 0.26 uM 101 mM 200,000

Nitrate 0.89 uM 53.6 mM 400,000

GISP 2 ice core 146 m depth image Vein structures shown

Huge increase in local ion concentrations in ice veins Potential chemical microenvironments 10 – 100 uL volume per L of bulk ice volume (1 ppm)

Titan ice-ocean interface:

Convecting ice interface could make diverse isolated chemical environments

1) Ice-ocean interface

2) Freezing front advances

3) Ice crystals trap near surface materials

4) Material entombed in growing ice structure

5) Water freezes out; jacks concentration

6) Chemistry happens?

7) Convective transport

8) Wonderful mixing during convection

100 km - 395 km Deep subsurface Ocean

Note scale change in y-axis. 0-1 km has a linear scale >1 km depth is a log scale.

Water Ocean

Composition 0-3% $NH_3/H_2O = 0-10\% MgSO_4/H_2O$ Exact depth to Ocean 74-108 km from Cassini-Huygens

T= 261 K - 272 K shallow thermal gradient P = 133 MPa - 600 MPa Density: 1.1 g/cm³ - 1.2 g/cm³

Water ocean!

Reducing conditions (oxidizing relative to the surface?)
Interfaces of ice layers (and core?)
Potential for salts extracted from core mixing
Repository for transported organics

Key questions:

Exactly how deep to ocean?
What are likely chemical compositions?

395 km – 470 km High Pressure Ice Layers

HP ices (ice V and Ice VI)

May not completely seal off core from Ocean (buoyant melts likely; Kalousova and Sotin 2018) Layer thicknesses depend on ocean composition and heat input

T= 272 K - 282 K shallow thermal gradient P = 600 MPa - 750 MPa Density: 1.3 g/cm³

Freezing conditions (squeezing ocean from both sides) may allow similar jacking of trapped chemicals

Key questions:

Exactly how deep to the ocean? What are likely chemical compositions?

470 km – center Hydrated silica core

Note scale change in y-axis. 0-1 km has a linear scale >1 km depth is a log scale.

Hydrated silicates

T= 282 K - 340 K (500 K?) shallow thermal gradient P = 750 MPa - 9.9 GPa (Earth life limit is 2.1 GPa) Density: 2.7 - 3.2 g/cm³

Possible inhomogeneities could create diverse microenvironments in core and contact with HP ice

Primarily inorganic environment Source of CH₄, NH₃, and organics! (Miller et al. 2019)

In theory, life could exist to 2000 km depth at Titan pressure, temperature conditions.

Key questions:

How much exchange with Ocean now? In past? Pore spaces/fracture/fluid convection? What are high-pressure limits for terrestrial life?

Titan *P,T* plot overlaps with terrestrial Deep Ice habitats!

Microbial diversity in terrestrial Deep Ice

Data from GISP2 core melt and culture experiments

Corresponding *P.T* conditions of 11 km deep in Titan' subsurface

Reference: Miteva et al., Env. Microbiology 11 (2009) 640-656.

Titan's Layers: Conclusions, Implications, and Questions

Multiple layers of Titan; Multiple opportunities to mix organics / water How deep do organics go down from surface?
Or come up from interior?

Some Titan conditions similar to conditions in Antarctic/Greenland Deep Ice environments

Convective ice layer (7 km - 100 km) and crustal ice ocean interface (100 km) might be most favorable for life to exist, and even originate on Titan.

Large areas of habitable T and P (and some liquid H_2O) could exist on Titan Need a combo psychrophile-piezophile What are the cold-pressure combination limits of adapted terrestrial life?

What are further constraints on physical/chemical environment? What are transport mechanisms/fluxes?